The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees.
نویسندگان
چکیده
Patient specific geometrical data on human coronary arteries can be reliably obtained multislice computer tomography (MSCT) imaging. MSCT cannot provide hemodynamic variables, and the outflow through the side branches must be estimated. The impact of two different models to determine flow through the side branches on the wall shear stress (WSS) distribution in patient specific geometries is evaluated. Murray's law predicts that the flow ratio through the side branches scales with the ratio of the diameter of the side branches to the third power. The empirical model is based on flow measurements performed by Doriot et al. (2000) in angiographically normal coronary arteries. The fit based on these measurements showed that the flow ratio through the side branches can best be described with a power of 2.27. The experimental data imply that Murray's law underestimates the flow through the side branches. We applied the two models to study the WSS distribution in 6 coronary artery trees. Under steady flow conditions, the average WSS between the side branches differed significantly for the two models: the average WSS was 8% higher for Murray's law and the relative difference ranged from -5% to +27%. These differences scale with the difference in flow rate. Near the bifurcations, the differences in WSS were more pronounced: the size of the low WSS regions was significantly larger when applying the empirical model (13%), ranging from -12% to +68%. Predicting outflow based on Murray's law underestimates the flow through the side branches. Especially near side branches, the regions where atherosclerotic plaques preferentially develop, the differences are significant and application of Murray's law underestimates the size of the low WSS region.
منابع مشابه
Statistical analysis of the association between rheological properties of blood and atherosclerosis
The aim of this study is to investigate the effects of non-Newtonian blood rheology models on the wall shear stress (WSS) distribution in a cohort of patients-specific coronary arteries. Twenty patients with diseased left anterior descending (LAD) coronary arteries (with varying degrees of stenosis severity from mild to severe) who underwent angiography and in-vivo pressure measurements were se...
متن کاملBlood Flow Simulations in Patient-specific Aorto-coronary Bypass Models: the Role of Boundary Conditions
Computer simulations of bypass hemodynamics can provide a valuable insight into the problem of graft failures, considering the close relationship between the hemodynamics and the patency and overall performance of implanted bypass grafts. However, to be able to reliably predict flow changes brought about by implanted bypass grafts, numerical simulations have to be carried out for physiologicall...
متن کاملInfluence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery
BACKGROUND In literature, the effect of the inflow boundary condition was investigated by examining the impact of the waveform and the shape of the spatial profile of the inlet velocity on the cardiac hemodynamics. However, not much work has been reported on comparing the effect of the different combinations of the inlet/outlet boundary conditions on the quantification of the pressure field and...
متن کاملComparison of the Graft Angles Effects on the Temporal Wall Shear Stress Gradients in the Aorto-Coronary and Coronary-Coronary Bypasses
In this theoretical study, the effect of various types of bypass graft angles on the flow field, has been investigated specially on the temporal Wall Shear Stress (WSS) on the toe, heel and some locations on the bed of the Left Anterior Descending (LAD) artery at the anastomoses areas in the Aorto-Coronary (AC) and Coronary-Coronary (CC) bypasses. Flow fields in both bypasses with angles of...
متن کاملBoundary Shear Stress in a Trapezoidal Channel
This paper focuses on a hydraulic radius separation approach used to calculate the boundary shear stress in terms of bed and wall shear stress proposed in a trapezoidal channel. The average bed and sidewall shear stress in smooth trapezoidal open channels are derived after using Guo & Julien (2005) early equations taking a part of an investigation to cover both rectangular and trapezoidal chann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 44 6 شماره
صفحات -
تاریخ انتشار 2011